together with a parameter $k_{\rm rel}$ indicating the relative outersphere reactivity. The order for $k_{\rm rel}$ parallels the rates of dissolution of metal oxide films by these reagents and suggests that of these common reductants, only $Cr(edta)^{2-}$ is more potent than $V(pic)_3^{-}$.

The self-exchange rate for $V(pic)_3^{0/-}$ of $3.1 \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$ is 8 orders of magnitude larger than the value for V- $(H_2O)_6^{3+/2+.42}$ This may imply that the structural rearrangement associated with the electron-transfer process is

(42) Krishnamurty, K. V.; Wahl, A. C. J. Am. Chem. Soc. 1958, 80, 5921-5924.

smaller for $V(pic)_3^{0/-}$ than for $V(H_2O)_6^{3+/2+}$. It is noteworthy that the estimate for the $V(bpy)_3^{3+/2+}$ exchange is 10^7 M^{-1} s-1.9

Acknowledgment. This paper is published by permission of the CEGB. The authors wish to thank SERC for a CASE studentship (to A.M.L.) and for financial support, which was also provided by the CEGB and the Universities of Glasgow and Notre Dame. Purchase of equipment was supported by an Atlantic Richfield Grant from the Research Corp. This work was carried out in part at the University of Glasgow.

Registry No. V(pic)₃⁻, 76298-57-2; Co(edta)⁻, 87698-06-4; Co- $(NH_3)_6^{3+}$, 14695-95-5; Co(en)₃³⁺, 14878-41-2; Co(sep)³⁺, 72496-77-6.

Contribution from the Institut für Anorganische und Angewandte Chemie, Universität Hamburg, D-2000 Hamburg 13, Germany

Oligo(phosphine) Ligands. 7.¹ Free-Radical-Catalyzed Synthesis of Some Completely Alkylated Oligo(tertiary phosphines) Containing Trimethylene Linkages

MARTIN ANTBERG, CONSTANZE PRENGEL, and LUTZ DAHLENBURG*

Received December 2, 1983

Novel alkylated tri- and tetradentate phosphine ligands containing trimethylene connecting chains between the donor atoms have been prepared through free-radical addition of P-H functionalized alkylphosphines to allylphosphines. Thus, the permethylated tris(phosphine) MeP(CH₂CH₂CH₂PMe₂)₂ has been obtained in high yield by irradiating a mixture of MeP(CH₂CH=CH₂)₂ and excess Me₂PH at $\lambda > 300$ nm in the presence of catalytic amounts of azo-2,2'-bis(isobutyronitrile). The terminally ethylated homologue $MeP(CH_2CH_2CH_2PEt_2)_2$ has been synthesized similarly from $MeP(CH_2CH=CH_2)_2$ and Et₂PH. Radical-initiated addition of Me₂PH to t-BuP($CH_2CH=CH_2$)₂ has been applied as an efficient method of synthesis for the tridentate t-BuP(CH₂CH₂CH₂PMe₂)₂. Furthermore, the completely aliphatic tripod tetrakis(tertiary phosphines) $P(CH_2CH_2CH_2PR_2)_3$ (R = Me, Et) have been made accessible by coupling Me₂PH and Et₂PH, respectively, onto triallylphosphine. The NMR (¹H, ³¹P, ¹³C) and mass spectra of these new oligo(phosphine) ligands are described.

Introduction

Oligo(phosphines) containing flexible trimethylene linkages are valuable chelating ligands for the platinum metal ions. This has mainly been demonstrated by Meek and his coworkers in a series of papers dating back to the early 1970s.² One straightforward route to this class of compounds involves coupling reactions between (3-chloropropyl)phosphines R₂P- $(CH_2)_3Cl$ and phosphide nucleophiles, e.g. $R_2P(CH_2)_3P(R)Li$, or between chlorophosphines $R_{3-n}PCl_n$ (n = 1-3) and R_2P -(CH₂)₃MgCl Grignard reagents.³⁻⁶ However, the range of application of this method is limited by the stability of the 3-chloropropyl key compounds, which appear to be available only with bulky substituents such as phenyl or cyclohexyl on phosphorus.

Various efforts have therefore been made to develop more variable methods of synthesis from which three major strategies have begun to emerge: (1) base-assisted coupling of vinyl and allyl (and 3-chloropropyl) phosphine units onto trimethylene-linked secondary-tertiary bis(phosphines) within the coordination sphere of a d^8 transition-metal ion;⁷ (2) radical-catalyzed P-H addition to allyl derivatives of P(V), viz. $H_2C = CHCH_2P(O)(O-i-Pr)_{2-n}Me_n$ (n = 0, 1), followed

by $LiAlH_4$ reduction;⁸ (3) free-radical addition of P-H functionalized mono- and bis(phosphines) to an appropriate allylphosphine $H_2C = CHCH_2PR_2^{9,10}$ With allyl alcohol, allyl ethers, and allylamines as reactants, the latter method has been used recently also by Meek's group for the synthesis of a variety of C₃-linked phosphine ligands containing mixed P,O and P,N donor sets.⁴

In this report we demonstrate how the radical-chain addition of P-H groups across the double bonds of allylphosphines containing two or three H₂C=CHCH₂- functions can conveniently be exploited for the high-yield synthesis of the hitherto unknown P P P and

 $MeP(CH_2CH_2CH_2PMe_2)_2$ compounds MeP- $(CH_2CH_2CH_2PEt_2)_2$, $t-BuP(CH_2CH_2CH_2PMe_2)_2$, P- $(CH_2CH_2CH_2PMe_2)_3$, and $P(CH_2CH_2CH_2PEt_2)_3$. Due to their completely aliphatic character, these flexible tris(tertiary phosphine) and tripod tetrakis(tertiary phosphine) ligands should be particularly suitable for the preparation of low-valent transition-metal complexes, which then should exhibit increased basicity and, hence, reactivity at the central atom.

Experimental Section

General Procedures and Instrumentation. All manipulations were carried out under nitrogen atmosphere with standard Schlenk tech-

Part 6: Dahlenburg, L.; Prengel, C. Organometallics 1984, 3, 934.
 (a) Nappier, T. E.; Meek, D. W.; Kirchner, R. M.; Ibers, J. A. J. Am. Chem. Soc. 1973, 95, 4194. For reviews see: (b) Mason, R.; Meek, D. W. Angew. Chem. 1978, 90, 195; Angew. Chem., Int. Ed. Engl. 1978, 17, 183. (c) Meek, D. W.; Mazanec, T. J. Acc. Chem. Res. 1981, 14, 266.

Uriarte, R.: Mazanec, T. J.; Tau, K. D.; Meek, D. W. Inorg. Chem.

⁽⁴⁾ 1980, 19, 79

⁽⁵⁾ Arpac, E.; Dahlenburg, L. Z. Naturforsch., B: Anorg. Chem., Org. Chem. 1980, 35B, 146.

McAuliffe, C. A.; Levason, W. "Phosphine, Arsine, and Stibine Com-(6)

plexes of the Transition Elements"; Elsevier: Amsterdam, 1979; p 23. (a) Waid, R. D.; Meek, D. W. Organometallics 1983, 2, 932. (b) Waid, R. D.; Meek, D. W. Inorg. Chem. 1984, 23, 778. (7)

⁽a) Baacke, M.; Stelzer, O.; Wray, V. Chem. Ber. 1980, 113, 1356. (b) (8) Baacke, M.; Hietkamp, S.; Morton, S.; Stelzer, O. Chem. Ber. 1981, 114, 2568.

⁽⁹⁾ Arpac, E.; Dahlenburg, L. Angew. Chem. 1982, 94, 929; Angew. Chem.,

Int. Ed. Engl. 1982, 21, 931; Angew. Chem., Suppl. 1982, 1950. (a) Diel, B. N.; Haltiwanger, R. C.; Norman, A. D. J. Am. Chem. Soc. 1982, 104, 4700. (b) Diel, B. N.; Norman, A. D. Phosphorus Sulfur (10)1982, 12, 227.

Oligo(phosphine) Ligands

niques. Caution! Phosphines are toxic compounds with an obnoxious odor. All procedures must therefore be carried out in an efficient fume hood. Effluent vapor should be passed through NaOCl traps before venting them into the hood exhaust.

The photolysis experiments were done by externally irradiating the reactants contained in 150-mL Duran Schlenk tubes. The irradiation source was a quartz-jacketed water-cooled high-pressure mercury lamp (Philips HPK 125 W; $\lambda > 300 \text{ nm}^{11}$).

Solvents were dried according to recommended methods and were distilled under nitrogen prior to use.

Proton NMR spectra were recorded in C_6D_6 at 80 MHz on a Bruker WP 80 spectrometer. ³¹P NMR spectra were collected in toluene on a Bruker WH 90 instrument operating at 36.44 MHz. ¹³C NMR data were obtained in C_6D_6 either at 20.15 MHz (Bruker WP 80) or at 22.63 MHz (Bruker WH 90). Chemical shifts are reported in ppm relative to external Me₄Si (¹H, ¹³C) or H_3PO_4 standards (downfield positive). Mass spectra were taken at 70 eV on a Varian CH 7 spectrometer.

Starting Materials. Allyl chloride was obtained from Riedel de Haen (Seelze) and was distilled under nitrogen before use. Tri-nbutylphosphine was purchased from Merck-Schuchardt (Darmstadt) and was used without further purification. Methyldichlorophosphine was supplied by Hoechst (Frankfurt) and was employed as obtained. t-BuPCl₂,¹² Me₂P(S)P(S)Me₂,¹³ and Et₂P(S)P(S)Et₂¹⁴ were synthesized according to published procedures. The desulfuration of $Me_2P(S)P(S)Me_2$ by tri-*n*-butylphosphine in the presence of water¹⁵ was found to be the method of choice for the shorttime synthesis of dimethylphosphine in quantities up to 20 g. Consequently, diethylphosphine was prepared by an analogous route:

Et₂PH.

$$2Et_2P(S)P(S)Et_2 + 4n-Bu_3P + 2H_2O \rightarrow 3Et_2PH + 4n-Bu_3PS + Et_2P(O)OH (1)$$

A 250-mL, round-bottomed Schlenk flask was charged with a mixture of 25.7 g (0.106 mol) of Et₂P(S)P(S)Et₂, 43.0 g (0.213 mol) of n-Bu₃P, and 1.9 g (0.106 mol) of water. The flask was fitted with a 20-cm Vigreux column connected to a compact distillation head and an ice-cooled receiver, and the temperature was raised slowly to ca. 170 °C (oil bath) when the reaction mixture became homogeneous. Within 3 h, the temperature was further raised to 230 °C to distill 9 g (63%) of diethylphosphine, which was collected at 55-65 °C (lit.¹⁴ bp 83-85 °C). The distillate appeared to contain minor amounts of water, as indicated by its slight turbidity. However, the product could be used in the two syntheses described below without additional purification.

The identity of the material thus obtained was confirmed by ¹³C and ¹H NMR spectroscopy; an "attached proton test" (APT) pulse sequence with $\tau = 8 \text{ ms}^{16}$ revealed the CH₂ and CH₃ carbons at δ 13.6 and 12.8 as doublets of opposite amplitudes with J(PC) = 10Hz each; the proton NMR spectrum showed the P-H moiety at δ 3.00 as a double quintet characterized by ${}^{1}J(PH) = 191.0$ Hz (lit.¹⁷ J = 190 Hz) and ${}^{3}J(HH) = 6.1$ Hz (complex PEt₂ multiplet at 1.5 > δ > 0.7 (10 H) not analyzed.

Diallylmethyl- and diallyl-t-butylphosphine are known in the literature,^{8b,18} but no preparative details have so far been reported. We obtained these organophosphines as follows:

MeP(CH₂CH=CH₂)₂.

$$MePCl_{2} + 2H_{2}C = CHCH_{2}MgCl \xrightarrow{1HF} MeP(CH_{2}CH=CH_{2})_{2} + 2MgCl_{2} (2)$$

A 27-g (0.23 mol) sample of MePCl₂ dissolved in 100 mL of THF was added dropwise to a stirred solution of 0.6 mol of the allyl Grignard reagent in 300 mL of THF. After the addition was complete, the

- nm and is virtually impervious below 300 nm.
 (12) Fild, M.; Stelzer, O.; Schmutzler, R. Inorg. Synth. 1973, 14, 4.
 (13) Butter, S. A.; Chatt, J. Inorg. Synth. 1974, 15, 185.
 (14) Issleib, K.; Tzschach, A. Chem. Ber. 1959, 92, 704.
 (15) Trenkle, A.; Vahrenkamp, H. Z. Naturforsch., B: Anorg. Chem., Org. Chem. 1979, 34B, 642.
 (16) Patt, L. S.; Shoolery, J. N. J. Magn. Reson. 1982, 46, 535.
 (17) Medditzer, V. Maine, L.; Chenrager, L.; Chenr. Chem. Computer
- (17) Moedritzer, K.; Maier, L.; Groenweghe, L. C. D. J. Chem. Eng. Data 1962, 7, 307
- (18) Grim, S. O.; Yankowsky, A. W.; Bruno, S. A.; Baily, W. J.; Davidoff, E. F.; Marks, T. J. J. Chem. Eng. Data 1970, 15, 497.

mixture was refluxed for 1 h. Subsequently, a 200-mL portion of the solvent was removed by distillation, 200 mL of a deoxygenated, saturated aqueous solution of ammonium chloride was added, and the mixture was shaken vigorously with 200 mL of diethyl ether. The organic layer was separated, and the aqueous solution was extracted with three 80-mL portions of Et₂O. The combined organic fractions were dried over Na_2SO_4 and then distilled to give 19 g (65%) of MeP(CH₂CH=CH₂)₂ as a colorless liquid, bp 152 °C (760 mm).

¹H NMR: $\delta(PCH_3) = 0.78 (3 \text{ H}, \text{d}, ^2J(PH) = 4.1 \text{ Hz}), \delta(PCH_2)$ = 1.9–2.1 (4 H, m), δ (CH=CH₂) = 4.7–5.0 (4 H, m), δ (CH=CH₂) = 5.4–6.0 (2 H, m). ¹³C NMR: δ (PCH₃) = 9.8 (d, ¹J(PC) = 19 Hz), $\delta(PCH_2) = 33.8 \text{ (d, } {}^1J(PC) = 16 \text{ Hz}), \delta(CH=CH_2) = 116.3$ $(d, {}^{3}J(PC) = 9 Hz), \delta(CH=CH_{2}) = 133.6 (d, {}^{2}J(PC) = 6 Hz).$ t-BuP(CH₂CH=CH₂)₂.

$$t-BuPCl_2 + 2H_2C = CHCH_2MgCl \xrightarrow{THF} t-BuP(CH_2CH=CH_2)_2 + 2MgCl_2 (3)$$

This phosphine was obtained from 0.6 mol of H₂C=CHCH₂MgCl (in 500 mL of THF) and 35 g (0.22 mol) of t-BuPCl₂ (in 200 mL of THF). The yield was 30 g (80%) of t-BuP(CH₂CH=CH₂)₂ distilling at 42-45 °C (0.5 mm).

¹H NMR: $\delta(CH_3) = 0.94$ (9 H, d, ³J(PH) = 11.2 Hz), $\delta(PCH_2)$ = 2.1 (4 H, d (br), ${}^{3}J(HH) \simeq 7$ Hz), $\delta(CH=CH_{2}) = 4.8-5.1$ (4 H, m), $\delta(CH=CH_2) = 5.5-6.1 (2 H, m)$. ³¹P NMR: $\delta -5.9$ (lit.¹⁸ δ -6.0).

Triallylphosphine¹⁹ was also prepared with the $H_2C=$ CHCH₂MgCl/THF Grignard reagent. Yields were up to 75%.

¹H NMR: $\delta(PCH_2) = 2.07$ (6 H, dd, ²J(PH) < 1 Hz, ³J(HH) = 7.5 Hz), $\delta(CH=CH_2) = 4.1-5.0$ (6 H, m), $\delta(CH=CH_2) = 5.4-6.0$ (3 H, m). ¹³C NMR: $\delta(PCH_2) = 30.7$ (d, ¹J(PC) = 19 Hz), δ - $(CH=CH_2) = 116.8 (d, {}^{3}J(PC) = 7 Hz), \delta(CH=CH_2) = 133.8 (d, {}^{3}J(PC) = 133.8 (d$ $^{2}J(PC) = 6$ Hz). ³¹P NMR: $\delta -33.5$ (lit.²⁰ $\delta -34.3$).

Tridentate Phosphine Ligands. MeP(CH₂CH₂CH₂PMe₂)₂.

 $MeP(CH_2CH=CH_2)_2 + 2HPMe_2 \xrightarrow{UV (AIBN)}$

 $MeP(CH_2CH_2CH_2PMe_2)_2$ (4)

A 150-mL Duran Schlenk tube was charged with 9.6 g (0.075 mol) of MeP(CH₂CH=CH₂)₂, 19.8 g (0.319 mol) of Me₂PH, and 100 mg of AIBN [azo-2,2'-bis(isobutyronitrile)]. A reflux condenser cooled to -35 °C by means of a cryostat was attached to the reaction vessel, and the mixture was irradiated from the outside for 48 h with constant stirring. Excess dimethylphosphine was then removed under reduced pressure at room temperature, and the product was freed from any remaining volatile materials by heating to 50 °C under a dynamic vacuum. The yield was 16.6 g (88%) of colorless, liquid MeP-(CH₂CH₂CH₂PMe₂)₂ identified by the NMR and mass spectral data reported below.

MeP(CH₂CH₂CH₂PEt₂)₂.

$$MeP(CH_2CH=CH_2)_2 + 2HPEt_2 \xrightarrow{UV (AIBN)} MeP(CH_2CH_2CH_2PEt_2)_2 (5)$$

A Duran Schlenk flask containing 5.8 g (0.045 mol) of MeP-(CH₂CH=CH₂)₂, 9.0 g (0.100 mol) of Et₂PH, and 100 mg of AIBN was irradiated for 46 h with stirring. Any volatile components were then removed from the resulting mixture at 25-50 °C in vacuo to give 13.8 g (99%) of a colorless oil, which was characterized as the desired tris(phosphine) on the basis of its spectral properties (vide infra)

The ligand was also characterized in the form of the five-coordinate ruthenium complex $RuCl_2[MeP(CH_2CH_2CH_2PEt_2)_2]$, which gave a satisfactory elemental analysis.²¹ Anal. Calcd: C, 37.51; H, 7.34; Cl, 14.76; P, 19.34. Found: C, 37.5; H, 7.3; Cl, 13.9; P, 18.5. t-BuP(CH₂CH₂CH₂PMe₂)₂.

$$t$$
-BuP(CH₂CH=CH₂)₂ + 2HPMe₂ $-\frac{UV(AIBN)}{2}$

t-BuP(CH₂CH₂CH₂PMe₂)₂ (6)

A mixture of 11.4 g (0.067 mol) of t-BuP(CH₂CH=CH₂)₂, 15.0 g (0.242 mol) of Me₂PH, and 0.10 g of AIBN was irradiated for 48

- Fluck, E.; Lorenz, J. Z. Naturforsch., B: Chem., Biochem., Biophys., (20)Biol. 1967, 22B, 1095.
- (21) Antberg, M. Diplomarbeit, Universität Hamburg, 1983.

⁽¹¹⁾ Duran borosilicate glassware transmits only slight irradiation below 350 nm and is virtually impervious below 300 nm.

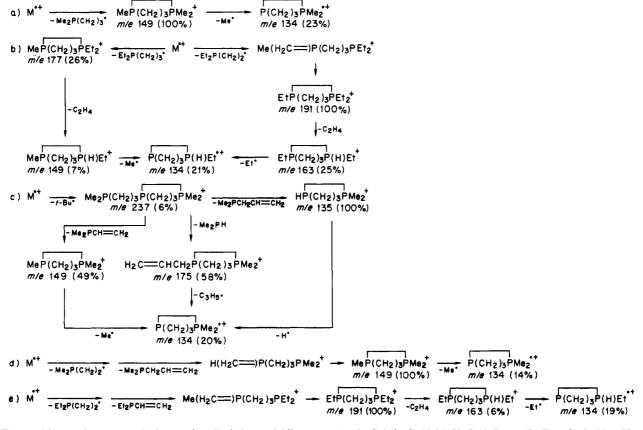

⁽¹⁹⁾ Jones, W. J.; Davies, W. C.; Bowden, S. T.; Edwards, C.; Davis, V. E.; Thomas, L. H. J. Chem. Soc. 1947, 1446

Table I.	NMR Data of	the RP(CH	(2CH2CH2PR'2)	and P(CH ₂	$CH_2CH_2PR_2)_3$	Compounds ^a
----------	-------------	-----------	---------------	-----------------------	-------------------	------------------------

	δ									
	$\overline{\text{MeP}[(\text{CH}_2)_3\text{PMe}_2]_2}$	$MeP[(CH_2)_3PEt_2]_2$	t-BuP[(CH ₂) ₃ PMe ₂] ₂	$P[(CH_2)_3PMe_2]_3$	$P[(CH_2)_3PEt_2]_3$					
	'H NMR									
PCH ₃ PCH ₂ CH ₃	0.80 (15 H, d (2.7)	$\left\{\begin{array}{c} 0.8-1.5 \text{ (overlapping}\\ \text{multiplet} \end{array}\right\}$	0.81 (12 H, d (2.5))	0.80 (18 H, d (2.6))	0.9-1.4 (overlapping multiplet)					
CH ₂ CH ₂ CH ₂ PC(CH ₃) ₃	1.2-1.6 (12 H, m))	1.3-1.5 (12 H, m) 0.92 (9 H, d (11.2))	1.3-1.6 (18 H, m))					
³¹ P NMR										
P_c^e obsd	-44.7	-44.9	-5.8	-34.4	-34.7					
\tilde{c} alcd ^b	-43	-43	+1	-33	-33					
P _t obsd	-54.3	-25.1	-54.3	-54.2	-25.1					
calcd ^b	-53	-25	-53	-53	-25					
¹³ C NMR										
PCH,	12.0 (d (18))	12.2 (d (18))								
$P(CH_3)_2$	14.5 (d (15))		14.6 (d (15))	14.8 (d (16))						
$PC(CH_3)_2$			27.9 (d (13)) ^c							
$PC(CH_3)_3$			27.9 (d (13)) ^c							
$P(CH_2CH_3)_2$		19.4 (d (13))			19.6 (d (14))					
$P(CH_2CH_3)_2$		10.0 (d (13))			10.0 (d (14))					
$P_{c}CH_{2}CH_{2}CH_{2}P_{t}$	32.0 (ť (12))	28.8 (dd' (13))	26.6 (t' (10)) ^d	29.6 (dd' (13))	28.9 (dd' (13)) ^d					
$P_{c}CH_{2}CH_{2}CH_{2}P_{t}$		22.8 (t' (14))	24.5 (dd' (17)) ^d	22.8 (t' (14))	23.1 (t' (15))					
$P_{c}CH_{2}CH_{2}CH_{2}P_{t}$	34.4 (t' (11))	32.8 (t' (10))	34.5 (t' (12))	34.6 (t' (11)	29.8 (dd' (13)) ^d					

^a Values of J(PH) or J(PC), in Hz, in parentheses; d = doublet, m = multiplet, dd' = pseudodoublet of doublets [X part of an ABX spin system (A, $B = {}^{31}P$; $X = {}^{13}C$)], t' = ABX pseudotriplet. For the ABX multiplets the splittings N/2 are given $[N = |J(P_cC) + J(P_tC)|]$. ^b Shift values were calculated from Grim's alkyl group contributions.³⁰ ^c Assignment on the basis of an APT ¹³C NMR experiment; cf. Figure 1. ^d Assignment uncertain. ^e Key to subscripts: c, central; t, terminal.

Scheme I. Important Mass Spectral Fragmentation Pathways for (a) $MeP[(CH_2)_3PMe_2]_2$, (b) $MeP[(CH_2)_3PEt_2]_2$, (c) t-BuP[(CH_2)_3PMe_2]_2, (d) $P[(CH_2)_3PMe_2]_3$, and (e) $P[(CH_2)_3PEt_2]_3$ (Fragment Ion Structures Tentative)

h. The resulting product was worked up as described above, yielding 18.7 g (95%) of a colorless, oily liquid. This material was readily identified as the expected tridentate ligand by NMR (Table I) and mass spectroscopy (Scheme I).

For further characterization of the compound, the four-coordinate rhodium complex $RhCl[t-BuP(CH_2CH_2PMe_2)_2]$ was isolated.²² The combustion analysis of this derivative gave the following results.

Anal. Calcd: C, 38.86; H, 7.69; P, 21.47. Found: C, 39.7; H, 7.7; P, 20.7.

Tripod Tetradentate Phosphine Ligands. $P(CH_2CH_2CH_2PMe_2)_3$. $P(CH_2CH=CH_2)_3 + 3HPMe_2 \xrightarrow{UV (AIBN)}$

 $P(CH_2CH_2CH_2PMe_2)_3$ (7)

This material was obtained by irradiating 13.2 g (0.086 mol) of $P(CH_2CH=CH_2)_3$, 22.6 g (0.365 mol) of Me₂PH, and 100 mg of AIBN for 64 h. Subsequent removal of excess Me₂PH in vacuo yielded

⁽²²⁾ Prengel, C. Dissertation (in progress), Universität Hamburg, 1983.

29.1 g (>99%) of the PP₁ compound as a colorless oil.

The identity of the tetrakis(phosphine) was derived from the spectral data given below as well as from the characterization of a series of iron, ruthenium, and osmium complexes $MX_2[P-(CH_2CH_2CH_2PMe_2)_3]^{21}$ The analysis obtained for the Ru(II) compound RuCl₂[P(CH₂CH₂CH₂PMe₂)₃], which has also been investigated by X-ray diffraction,²³ is given. Anal. Calcd: C, 35.17; H, 7.08; Cl, 13.84. Found: C, 35.0; H, 7.4; Cl, 13.4.

 $P(CH_2CH_2CH_2PEt_2)_3$.

$$P(CH_2CH=CH_2)_3 + 2HPEt_2 \xrightarrow{UV(ALBN)} P(CH_2CH_2CH_2PEt_2)_3$$
(8)

A Schlenk tube containing 8.2 g (0.053 mol) of P(CH₂CH=CH₂)₁, 21.9 g (0.243 mol) of Et₂PH, and 0.10 g of AIBN was irradiated for 64 h at room temperature. Any volatile materials were then removed by warming the product under a dynamic vacuum to 50 °C. The yield of colorless, oily P(CH2CH2CH2PEt2)3 was 21.3 g (95%). Composition and purity of the phosphine were checked by NMR and mass spectroscopy (vide infra).

The elemental analysis of an osmium complex of this oligophosphine, viz. OsCl₂[P(CH₂CH₂CH₂PEt₂)₃], gave the following results.²³ Anal. Calcd: C, 36.79; H, 7.06 Cl, 10.34. Found: C, 37.5; H, 7.0; Cl, 10.4.

Results and Discussion

Method of Synthesis. The UV/AIBN-initiated²⁴ anti-Markovnikov addition of dimethyl- and diethylphosphine across the carbon-carbon double bonds of allylphosphines $R_n P(CH_2CH=CH_2)_{3-n}$ (R = Me, t-Bu; n = 0, 1) has been found to be an attractive method for the preparation of some completely alkylated trimethylene-linked tris- and tetrakis-(phosphines) (cf. eq 4-8).

Formation of byproducts due to competing side-reactions or rearrangement processes as observed by $Meek^{4,7b,25}$ and ourselves9 for some AIBN-assisted phosphine/allylphosphine coupling reactions carried out at 100-110 °C did not occur in any of the room-temperature photolysis experiments described above.²⁶ We note, however, the failure of an attempt to synthesize t-BuP(CH₂CH₂CH₂PBu- t_2)₂ from t-BuP- $(CH_2CH=CH_2)_2$ and t-Bu₂PH: short-time irradiation resulted in incomplete conversion of the reactants; prolonged photolysis lead to a nonseparable mixture of unidentified products.²² On the other hand, Meek's phenylated PhP-(CH₂CH₂CH₂PPh₂)₂ ligand^{2a,4,5} was also obtained in an almost

- (23) Antberg, M. Dissertation (in progress), Universität Hamburg, 1983. (24) The reviewers asked us to comment on the specific purpose of the added AIBN radical initiator and to clarify whether the addition reactions described in this paper were actually brought about by photolysis or whether irradiation served only to decompose the added AIBN into free radicals. The anti-Markovnikov addition of P-H bonds to $(H_2C=$ $CHCH_2$)_{3-n}PR_n molecules will in fact occur when the reactants are irradiated in the absence of AIBN. This is shown (1) by the results of Diel and Norman^{10b} who obtained $H_2P(CH_2)_3PHCH_2CH=CH_2$ from the gas-phase photolysis of H_2C =CHCH₂PH₂ and (2) by observations of our own according to which $P(CH_2CH_2CH_2PMe_2)_3$ is also formed in approximately quantitative yields when the P(CH₂CH=CH₂)₃/ HPMe₂ photolysis is carried out without adding AIBN.²³ However these findings do not unequivocally demonstrate the photochemical initiation of the P-H bond-addition reactions since trace amounts of impurities forming free radicals upon irradiation cannot be excluded. Moreover, in view of the comparatively long wavelength of the radiation employed (phosphines will absorb in the 200-220-nm region!), such adventitious radical sources, e.g. allyl chloride from the phosphine preparations, are indeed likely promoters of "UV-initiated" P-H ad-dition reactions.^{10b} AIBN was therefore added in each case so as to maintain a defined free-radical source during irradiation.
 (25) DuBois, D. L.; Myers, W. H.; Meek, D. W. J. Chem. Soc., Dalton
- Trans. 1975, 1011.
- (26) There is, for example, no evidence of β-allyl attack, i.e. formation of Me₂P(CH₂)₃PMeCH₂CH(PMe₂)CH₃ or related compounds: oligo-oligophosphines containing ethylene connecting chains between the donor atoms will give rise to ³¹P NMR spectra exhibiting PP couplings of ca. 20 Hz,²⁷ which have not been detected for any of the new phosphines discussed herein. Although no elemental analyses were done, the yields of the metal complexes prepared for additional characterization of the new PP_2 and PP_3 ligands (cf. Experimental Section) appeared to be (phosphine) was indeed only the one in question.

quantitative yield by irradiating a mixture of PhP- $(CH_2CH=CH_2)_2$ and excess Ph_2PH for 22 h although we found it difficult to completely remove the relatively highboiling diphenylphosphine from the product.²²

The preparative value of the free-radical-catalyzed phosphine/allylphosphine addition reactions may particularly be exemplified by the high-yield synthesis of the two methylated oligophosphines $MeP(CH_2CH_2CH_2PMe_2)_2$ and P- $(CH_2CH_2CH_2PMe_2)_3$. Whereas phosphine ligands and their transition-metal complexes have generally been studied in more detail than the corresponding arsine compounds, the reverse is true for the $Me_nP(CH_2CH_2CH_2PMe_2)_{3-n}/Me_nAs$ - $(CH_2CH_2CH_2AsMe_2)_{3-n}$ homologues with n = 0 or 1. In these cases, the arsines MeAs(CH₂CH₂CH₂AsMe₂)₂ and As- $(CH_2CH_2CH_2AsMe_2)_3$ are readily available via the easily prepared building block ClMgCH₂CH₂CH₂AsMe₂ and have consequently been known for more than 20 years.²⁸ In contrast, a Grignard intermediate ClMgCH₂CH₂CH₂PMe₂ does not seem to be accessible, and neither MeP-(CH₂CH₂CH₂PMe₂)₂ nor P(CH₂CH₂CH₂PMe₂)₃ has been mentioned before although there have been at least three reports on the hybrid ligands $E(CH_2CH_2CH_2AsMe_2)_3$ (E = P, Sb, Bi).29-31

¹H NMR Spectra. Proton spectra have been used to check the completeness of the $>PH/H_2C=CHCH_2-$ addition, which is indicated by the absence of any resonances in the olefinic ranges $4.1 < \delta < 5.1$ and $5.4 < \delta < 6.1$.

The methyl signals of the phosphines containing Me₂Pgroups are simple doublets (Table I) irrespective of whether the methyl groups are enantiotopic or diastereotopic.³² Thus, the hydrogens of the pairwise diastereotopic terminal CH₃substituents of $MeP(CH_2CH_2CH_2PMe_2)_2$ and t-BuP- $(CH_2CH_2CH_2PMe_2)_2$ are not sufficiently different for their nonequivalence to be detected at 80 MHz. Within experimental error, their shifts and splittings match those of the protons attached to the mutually enantiotopic methyl groups of the tripod ligand $P(CH_2CH_2CH_2PMe_2)_3$. These results are similar to those previously obtained by King and Cloyd from the 60- and 100-MHz spectra of the homologous ethylenebridged oligo(phosphines) $MeP(CH_2CH_2PMe_2)_2$ and P- $(CH_2CH_2PMe_2)_3$.²⁷

³¹P NMR Spectra. As expected, the new phosphines were found to display ³¹P singlets occurring fairly upfield from the H_3PO_4 standard (Table I). Compared to the ³¹P shifts of King's compounds MeP(CH₂CH₂PMe₂)₂ [δ (PMe) = -34.3, $\delta(PMe_2) = -48.6]^{27}$ and $P(CH_2CH_2PMe_2)_3 [\delta(P) = -19.6, \delta(PMe_2) = -48.0]^{27}$ the signals of the respective central and terminal ³¹P nuclei of the two C₃-linked phosphines MeP-(CH₂CH₂CH₂PMe₂), and P(CH₂CH₂CH₂PMe₂), are shifted to higher field by, approximately, -15 (P), -10 (PMe), and -6 (PMe₂) ppm. This finding is thought to reflect a decrease in the effective steric bulk of the $P(CH_2)_n P$ units when an ethylene is exchanged for a trimethylene connecting chain.⁹

- (a) Barclay, G. A.; Barnard, A. K. J. Chem. Soc. 1961, 4296. (b) Barclay, G. A.; Nyholm, R. S.; Parish, R. V. J. Chem. Soc. 1961, 4433. Benner, G. S.; Hatfield, W. E.; Meek, D. W. Inorg. Chem. 1964, 3, (28)
- (29) 1544.
- (30) McAuliffe, C. A.; Meek, D. W. Inorg. Chim. Acta 1971, 5, 270.

- One of the reviewers argued that the terminal methyl groups of, e.g. (32) MeP(CH2CH2CH2PMe2)2 were enantiotopic rather than diastereotopic However, since phosphines are normally configurationally stable on the NMR time scale up to 200 °C,³³ the bridging phosphorus atom of a $RP(CH_2CH_2CH_2PMe_2)_2$ molecule should constitute a stable tetrahedral center. Hence, there is no molecular symmetry plane bisecting the Me-P-Me angles of the prochiral Me₂P moieties, the paired methyl groups thus becoming diastereotopic.³⁴ On the other hand, there are three molecular symmetry planes bisecting the Me-P-Me angles of the P(CH₂CH₂CH₂PMe₂)₃ molecule, which renders the methyl substituents of this compound enantiotopic.³⁴ Lambert, J. B. *Top. Stereochem.* **1971**, *6*, 19.
- (34) Jennings, W. B. Chem. Rev. 1975, 75, 307.

⁽²⁷⁾ King, R. B.; Cloyd, J. C. J. Am. Chem. Soc. 1975, 97, 53.

Reference 6, p 26. (31)

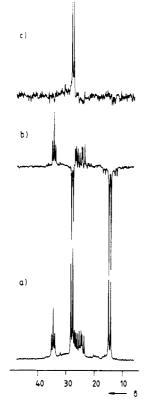


Figure 1. Identification of the resonance of the quaternary carbon C_q of t-BuP(CH₂CH₂CH₂PMe₂)₂ using the attached proton test (APT) pulse sequence:¹⁶ (a) 20.15-MHz ¹³C{¹H} NMR spectrum; (b) APT experiment (pulse width 45°, relaxation delay 2 s, $\tau = 8$ ms) showing the CH₃ signals with inverted amplitudes (note the decrease in intensity of the doublet at δ 27.9 superimposed by the (positive) signal of C_q); (c) APT pulse sequence ($\tau = 4$ ms) solely displaying the C_q doublet.

Note that apart from $\delta(t$ -BuP) the $\delta(^{31}P)$ values are predictable with a high degree of confidence using Grim's alkyl group contributions to ³¹P chemical shifts.³⁵

¹³C NMR Spectra. ¹³C NMR shifts and carbon-phosphorus coupling constants of bis- and tris(phosphines) containing $-CH_2CH_2CH_2$ -backbones have previously been reported by McAuliffe, Hill, and Dyer³⁶ as well as by ourselves.^{5,9} Thus, the ¹³C spectra of the compounds described herein were readily assigned by comparison with the data from the cited papers; cf. Table I.

(35) Grim, S. O.; McFarlane, W.; Davidoff, E. F. J. Org. Chem. 1967, 32, 781.

(36) Briggs, J. C.; McAuliffe, C. A.; Hill, W. E.; Minahan, D. M. A.; Dyer, G. J. Chem. Soc., Perkin Trans. 2 1982, 321. Similar to the methyl and ethyl carbon resonances of the phosphines studied earlier, ^{5,9,36} the CH₃ and CH₂ carbons of the alkyl substituents attached to the terminal phosphorus atoms gave rise to doublets well upfield from the trimethylene region. Within the C₃ linkages the signals of the central carbons occurred at higher field than those of the ¹³C nuclei directly linked to phosphorus although there remained some ambiguity concerning the assignment of the respective CH₂ resonances in the spectrum of *t*-BuP(CH₂CH₂CH₂PMe₂)₂. Most of the trimethylene ¹³C multiplets exhibited the ABX pseudotriplet splitting frequently found for P_ACCCP_B moieties;^{5,9,36} in some cases a four-line spectral pattern was observed, indicating a somewhat more pronounced difference between ¹J(PC), ²J(PC), and ³J(PC) than is usual.^{5,9,36-38}

A rather curious situation was met with the quaternary carbon atom of t-BuP(CH₂CH₂CH₂PMe₂)₂, which could not be identified from the routine ¹³C{¹H} spectrum. However, an attached proton test experiment¹⁶ did unambiguously reveal the resonance of this unique carbon as a doublet precisely coincident with the signal originating from the adjecent methyl ¹³C nuclei (Figure 1).

Mass Spectra. The major mass spectral fragmentation pathways are shown in Scheme I.

 $R_2P(CH_2)_{3^*}$, $R_2P(CH_2)_{2^*}$, and $t-C_4H_{9^*}$ radicals are readily lost from the parent ions, which have not been observed for any of the alkylated oligo(phosphines) described in this paper. The stability of the $R_2P(CH_2)_3PR^+$ fragments generated according to the scheme is ascribed to the formation of heterocyclic onium ions containing P-alkylated five-membered ring structures of the 1,2-diphospholane type. As reported earlier,^{5,9}

facile generation of stable $R^2P(CH_2)_3PR^+$ fragment ions is also a common feature of the mass spectra of trimethylenebridged tris(phosphines) bearing phenyl groups at the donor atoms. The smooth formation of the 1,2-diphospholane system from $P(CH_2)_3P$ precursors is further demonstrated by an observation of Issleib and Thorausch³⁹ who reported the facile elimination of dihydrogen from the lithio derivative of 1,3propanediylbis(phosphine) according to $H_2P(CH_2)_3P(Li)H \rightarrow$

$$HP(CH_2)_3PPLi + H_2.$$

Acknowledgment. We are grateful to the Deutsche Forschungsgemeinschaft (Bonn) for financial support of this research (Grant Da 123/4-1) and to Hoechst AG (Frankfurt) for a generous gift of MePCl₂. Thanks are also expressed to Dr. E. Haupt for carrying out the APT NMR experiments and to Prof. W. A. König and his group for taking the mass spectra.

- (37) Mann, B. E. J. Chem. Soc., Perkin Trans. 2 1972, 30.
- (38) King, R. B.; Cloyd, J. C. J. Chem. Soc., Perkin Trans. 2 1975, 938.
- (39) Issleib, K.; Thorausch, P. Phosphorus and Sulfur 1978, 4, 137.

Contribution from the Department of Chemistry, University of Idaho, Moscow, Idaho 83843

Trifluoramine Oxide with Nitric Oxide: A Facile in Situ Source of Nitrosyl Fluoride

SCOTT A. KINKEAD and JEAN'NE M. SHREEVE*

Received March 19, 1984

Trifluoramine oxide (NF₃O) has been found to react rapidly with nitric oxide to give nitrosyl fluoride (FNO). A free-radical reaction involving the known difluoronitryl (F_2NO_2) radical is proposed as a plausible mechanism. This reaction has been used as an in situ source of nitrosyl fluoride to synthesize the previously unknown nitroso compounds $R_f(CF_3)CFNO$ ($R_f = n-C_5H_{11}$, SF₅, OC₂F₅).

Nitrosyl fluoride, first synthesized by Ruff in 1905 from AgF_2 and NOCl,¹ has been prepared by a variety of methods,

including the reaction of fluoride ion with nitrosyl salts²⁻⁴ or $N_2O_4^5$ and the direct reaction of nitric oxide with F_2 .⁶ In